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Abstract. The newscast model is a general approach for communication in large
agent-based distributed systems. The two basic services—membership manage-
ment and information dissemination—are implemented by the same epidemic-
style protocol. In this paper we present the newscast model and report on experi-
ments using a Java implementation. The experiments involve communication in a
large, wide-area cluster computer. By analysis of the outcome of the experiments
we demonstrate that the system indeed shows the scalability and dependability
properties predicted by our previous theoretical and simulation results.

1 Introduction

The popularity of peer-to-peer systems in the last couple of years illustrates how the
Internet is gradually shifting toward a distributed system that supports more than only
client-server applications. A key issue in peer-to-peer systems is that distribution of
data and control across processes is symmetric. Moreover, this distribution is done in
such a way that processes are highly autonomous and independent of each other. The
important advantage of this approach is scalability. A well-designed peer-to-peer system
can easily scale to millions of processes, each of which can join or leave whenever it
pleases without seriously disrupting the system’s overall quality of service.

A crucial aspect of large-scale peer-to-peer systems is that they are easy to manage.
Any system that attempts to centrally manage how processes connect to each other and
distribute data and control will fail, notably when processes join and leave all the time.
Instead, it should be a property of the design itself that the distribution of data and
control takes place in an automated fashion that requires no global management at all.
In effect, we are looking at the design of self-managing systems.

There are many different types of peer-to-peer systems. In most cases, these systems
can be divided into two separate layers. The lowest layer consists of protocols for han-
dling group membership and communication, whereas the highest layer implements the
required functionality for a specific application. The lowest layer thus forms the core
of the peer-to-peer system. Roughly speaking, there are currently three types of core
systems.

The first, and most popular type is designed to efficiently support content-based
searching. In many cases, these systems operate with centralized index servers that keep
track of where content is located. The index servers are often constructed dynamically
in the form of super peers [16]. Examples include Gnutella and KaZaa.

The second type aims at efficiently routing a request to its destination through
an overlay network formed by the collection of peers. Examples of such systems are
Chord [13], Pastry [12], Tapestry [17], and CAN [10].



A third type deploy epidemic protocols [3]. In these systems, the goal is not so
much enabling point-to-point communication between peers, but rather the rapid and
efficient dissemination of information. Examples in this class include Scamp [6], and
the systems underlying probabilistic reliable broadcasting [4, 5, 9].

In this paper, we concentrate on information-dissemination based systems that de-
ploy epidemic protocols. A crucial element in an epidemic protocol is that a participat-
ing peer can randomly select another peer to exchange information. Traditional proto-
cols supported this random selection by providing a list of all other participating peers.
Clearly, such an approach cannot scale to large networks. As an alternative, approaches
such as described in [4, 7] ensure that a peer always has a list that represents an inde-
pendent and randomly selected sample from the entire set of peers.

We have recently developed an epidemic protocol for disseminating information
in large, dynamically changing sets of autonomous agents. This, so-named, newscast
protocol solves two problems inherent to large sets of agents: (1) information dissemi-
nation, and (2) efficient membership management. The main distinction in comparison
to similar epidemic-based solutions, is that agents can join and leave at virtually no cost
at all, and without affecting the information-dissemination properties of the protocol.

The associated model of newscasting, that is, the model of information dissemi-
nation and membership management as presented to agents, is described in detail in
a separate paper [8], along with theoretical analyses partly based on simulations. To
better substantiate our claims regarding scalability, we have implemented the news-
cast protocol (in Java). We subsequently used this implementation to conduct a series
of experiments that emulate large-scale agent-based applications on a real network. In
particular, we set up a series of experiments with 128,000 agents scattered across a
hierarchically organized cluster of 320 processors. These processors, in turn, are geo-
graphically spread over four different sites in the Netherlands.

An important and interesting aspect of these experiments is that the underlying com-
munication network is heterogeneous. It includes interprocess communication facilities
on a single workstation, point-to-point local-area high-speed links, as well as wide-area
links. In this way, we are better able to measure the effect that a real communication
infrastructure has on the properties of our dissemination model.

In this paper, we describe the newscast protocol and report on our experiments in-
volving emulation of large networks of agents. We show that the theoretical results,
which are based on an idealized underlying communication infrastructure, still hold
when dealing with a realistic infrastructure, thus further substantiating our claims that
newscasting is a highly robust and scalable model for information dissemination in
large and rapidly changing sets of agents. In the following, we subsequently discuss
our protocol, the experimental setup, and the results of our experiments, to end with
conclusions.

2 The Newscast Protocol

In our implementation of the newscast model, a large group of agents is connected
through a simple peer-to-peer data exchange protocol. The protocol is extremely simple:
each agent knows only a (continuously changing) small set of peers of which one is



randomly chosen to exchange information. In this section, we start with explaining how
the protocol works, after that we explore some remarkable theoretical properties of
its emerging behavior. These properties are further investigated in Section 3 when we
report on our large-scale emulation experiments.

2.1 Principal Operation

The two main building blocks of our newscast model are a collective of agents and a
news agency, as shown in Figure 1. The basic idea is that the news agency asks all
agents regularly for news by means of a callback function getNews(). In addition, the
news agency provides each agent with news about the other agents in the collective,
again through a callback function newsUpdate(news[]).

News agency

receiveCache

sendCache

WAN node WAN node

getNews newsUpdate

Correspondent

Agent

getNews newsUpdate

Correspondent

Agent

cache cache

Fig. 1. The organization of a newscast application.

The definition of what counts as news is application dependent. The agents simply
live their lives (perform computations, listen to sensors and the news, etc.) and based
on the computations they have completed and the information they have collected they
must provide the news agency with news when asked.

The model itself can be fully specified in terms of the functional and statistical
properties of the operations getNews() and newsUpdate(news[]). Instead of this defini-
tial style of specification, we take a much simpler approach in this paper by describing
the semantics of the model in terms of the newscast protocol, of which we have shown
that it meets the model’s specifications [8].

Each agent has an associated correspondent that runs on the same machine hosting
the agent. The correspondents jointly form the distributed implementation of the news
agency. Each correspondent maintains a fixed-sized cache of news items. Whenever an
agent passes a news item to its correspondent, the latter timestamps the item, adds its
own network address, and subsequently caches the item. A news item itself consists of
an agent identifier and the actual news as provided by the agent, as shown in Figure 2.



AgentID Application−specific dataTimestampAddress

Cache entry

News item

Fig. 2. The format of news items and cache entries.

Correspondents regularly exchange caches as follows. Assume the size of each
cache is c. Omitting specific details (which are found in [8]), each correspondent exe-
cutes the following five steps once every ∆T time units (∆T is referred to as the refresh
interval).

1. Request a fresh news item from the local agent by calling getNews(). Add the item
to the cache.

2. Randomly select a peer correspondent by considering the network address of other
(and available) correspondents as found in the cache.

3. Send all cache entries to the selected peer, and, in turn, receive all the peer’s cache
entries. Merge the received entries into the local cache.

4. Pass the received cache entries from the peer agent to the local agent by calling
newsUpdate().

5. The correspondent now has 2c cache entries; it subsequently throws away the c
oldest ones.

The selected peer correspondent executes the last three steps as well, so that after the
exchange both correspondents have the same cache. Note, however, that as soon as any
of these two correspondents executes the protocol again, their respective caches will
most likely be different again.

The protocol does not require that the clocks of correspondents are synchronized,
but only that the timestamps of news items in a single cache are mutually consistent.
We assume that the communication time between two correspondents is negligible in
comparison to ∆T (which is generally in the order of minutes). When a correspondent A
passes its cache to B, it also sends along its current local time, TA. When B receives the
cache entries, it subsequently adjusts the timestamp of each entry with a value TA −TB,
effectively normalizing the time of each new entry to those already cached.

2.2 Properties of Newscasting

As it turns out, this simple model of communication has desirable statistical properties.
To understand the behavior of newscasting, we consider the communication graphs Gt
at different time instants t that are induced by maintaining caches at each correspondent.
Each such graph is constructed from a corresponding directed graph Dt as follows. The
vertex set Vt of Dt contains the correspondents. For correspondents a and b in Vt we
have the link a → b if and only if the address of b is in the cache of a at time t. The
cache-exchange algorithm leads to a series of directed graphs, given an initial directed



graph D0. The communication graph Gt is now simply constructed by dropping the
orientation in Dt . Gt expresses the possibility of cache exchanges.

Now consider the series of graphs G0,G∆T ,G2∆T , . . .. Note that during a time in-
terval ∆T each correspondent initiates the cache-exchange algorithm. In other words,
after ∆T time units, all correspondents will have fetched a news item from their agent,
exchanged caches with at least one of their neighbors (and possibly more), and have
passed c news items to their agent. We say that a communication cycle has completed.

We have conducted simulations with up to 50,000 correspondents, assuming an ide-
alized communication infrastructure with no communication delays and packet losses.
Our simulations show that even for relatively small cache sizes (say, c = 20) each graph
Gk∆T stays connected. Moreover, it turns out that the average length of each shortest
path between two nodes is small, as shown in Figure 3(a).
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Fig. 3. (a) Average shortest path length between two nodes for different cache sizes. (b) Average
clustering coefficient taken over all nodes.

In fact, further investigations revealed that the induced communication graphs have
many properties in common with what are known as small worlds [1, 15]. An important
property of these types of networks is that they show a relatively high clustering coeffi-
cient, which, for a given node, is the ratio of the number of edges between the neighbors
of the node and the number of all possible edges between the neighbors. For example,
in a complete graph all nodes have a clustering coefficient of 1 while in random graphs
this coefficient is typically small (if our graphs were random, the clustering coefficient
would be expected to be c/n). Figure 3(b) shows the clustering coefficient for different
cache sizes c and communication graphs Gk∆T .

Simulations also show that we need only an extremely simple way of handling mem-
bership, which is an important improvement in comparison to other epidemic models.
Consider the worst solution to handling membership that could possibly disrupt the
emergent behavior of our protocol: an agent contacts a well-known central server and
simply initiates the cache-exchange protocol with that server. This approach systemati-
cally biases the content of caches, which now all depend on what is stored at the central
server.



We conducted a simulation experiment in which we admitted 50 new agents at every
communication cycle until 5000 agents had joined the network, after which no new
agents were allowed to join. When measuring the average path length again, we obtain
the results shown in Figure 4. What is seen, is that shortly after the last 50 agents
have been added (i.e., after 100 completed cycles), the average path length quickly
converges to the one we would expect in a stable graph. We can conclude that even this
worst-imaginable membership protocol does not affect the properties of newscasting.
In effect, when a node wants to join, it needs to know only the address of a single other
node and can simply start with executing the newscast protocol. Leaving is done by
simply stopping communication.
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Fig. 4. Average shortest path length while adding 50 agents every cycle until 5000 agents have
been added.

3 Validation of the Newscast Protocol

Using theoretical analyses and simulations, we are able to show that the statistical prop-
erties of the protocol meet the specifications of the newscast model. However, in the
world of large-scale systems, theory and practice often diverge. Therefore, to investi-
gate how the protocol would behave in practice and to further substantiate our claims,
we conducted a series of emulation experiments. Emulation, as opposed to simulation,
involves implementing the protocol and conducting experiments on a real network of
computers. In our case, we carried out experiments with a collective of up to 128,000
agents distributed across a 320-node wide-area cluster of workstations.

We emphasize that these experiments involve the actual implementation of the
newscast protocol, and as such, favorably compete with the large-scale simulations
used for the evaluation of peer-to-peer protocols such as CAN [10], Chord [14], and
Pastry [2, 12], or the real-world experiments involving tens of nodes across wide-area
links as conducted for OceanStore [11].



3.1 The Implementation

In order to experiment with the newscast model described earlier, we implemented its
underlying protocol. Java was chosen for portability reasons, allowing us to easily ex-
ecute the protocol in heterogeneous environments. Our implementation is organized as
three modules: the core, the application, and the utility module. The core module im-
plements a correspondent materializing the epidemic protocol described in Section 2.1.
The core module has no dependencies on the other two modules. It is a self-contained
implementation of the newscast protocol. All communication is based on UDP. Multi-
ple instances of the core module can coexist in a single Java virtual machine, behaving
as separate, independent correspondents.

The application module provides the implementation of an agent. One instance of
the core module has exactly one associated instance of the application module. Our
experiments were focused on the properties of the epidemic protocol itself without con-
sidering any particular application. Therefore the agent we defined has only basic func-
tionality. It returns empty content in the getNews() operation, and ignores any content
delivered to it through the newsUpdate(news[]) operation.

The utility module serves the specific needs of our experiments, such as batch run-
ning, coordinating the experiments, and logging. Exactly one utility module instance
exists in each virtual machine. In particular, the utility module takes care of starting
multiple agent-correspondent pairs each running on a separate thread within the same
Java virtual machine to allow emulation of a large network. It coordinates with utility
modules running on other Java virtual machines (possibly on remote hosts) to determine
initial connection addresses for the correspondents. The utility module also contains
logging functionality. It periodically freezes the agent-correspondent pairs running in
the Java virtual machine, logs their state, and then resumes operation. Utility modules
coordinate to ensure that freezing and resuming for logging occur simultaneously on all
the Java virtual machines spread across the different hosts.

3.2 The DAS-2

We conducted our experiments on the Distributed ASCI Supercomputer (DAS-2), a
wide-area distributed cluster-based system consisting of five clusters of dual-processor
PCs located at different sites across the Netherlands. The cluster at the Vrije Universiteit
consists of 72 nodes, while the other clusters consist of 32 nodes each, giving a total of
200 nodes (400 processors). Each node has two 1-GHz Pentium-III processors, and at
least 1GB of RAM.

Nodes within a single cluster are connected by a Fast Ethernet (100Mbps) network
dedicated to their cluster. Clusters, in turn, communicate over wide-area links, which
are shared for all traffic between the universities and which have shown to support an
aggregated bandwidth of 20 Mbps. Figure 5 shows the DAS-2 architecture.

3.3 Experimental Setting

We carried out experiments with a network of 128,000 agents distributed across 160
dual-processor nodes on four of the five DAS-2 clusters. We recorded and analyzed the



Fig. 5. The DAS-2 architecture

behavior of the newscast model for three different cache sizes c: 20, 30 and 40. In all
three cases the refresh interval ∆T was 10 seconds.

The presented series of experiments was conducted to examine the possible impact
of the underlying network’s heterogeneity on the operation of the newscast model. It is,
therefore, worth describing the deployment of agents across the DAS-2 nodes. We used
160-dual processor nodes, selecting 64 nodes from the cluster at the Vrije Universiteit,
and 32 nodes out of three other DAS-2 clusters. We executed two Java virtual machines
per node (one per processor), each Java virtual machine running 400 agents.

The deployment of agents described above presents a desirable property for our
experiments: network heterogeneity. Four different types of communication were in-
volved, depending on the relative location of the agents communicating:

– Intraprocess communication for agents running in different threads within the same
Java virtual machine.

– Interprocess communication for agents run by separate Java virtual machines, but
on the same DAS-2 node.

– Local-area (or intracluster) communication for agents residing on different nodes,
but within the same cluster. These agents were communicating through a 100Mbps
Fast Ethernet network.

– Wide-area (or intercluster) communication for agents belonging to different clus-
ters. This type of communication was carried out over the wide-area links shared
with other wide-area traffic.

This diverse environment (with respect to networking) provided us with a valuable
testbed for studying the newscast model.



It is important to observe that even though 800 agents run within each DAS-2 node,
more than 99% of the communication between agents is either across wide-area or
local-area links. For any given agent, 799 other agents run on the same node, and
127,200 run on other nodes, which account for 0.6% and 99.4% of the total 128,000
agents respectively. As we observed in our experiments, the items in an agent’s cache
are randomly distributed over all the participating agents, irrespective of their location.
Therefore we expect only 0.6% of the total communication to be within or between
processes on the same node, and all the rest to be across local-area or wide-area links.
In particular, agents in the three 32-node clusters are expected to experience 80% wide-
area and 19.4% local-area traffic, while agents in our 64-node cluster are expected to
have 60% wide-area and 39.4% local-area traffic.

Another parameter of our experiments that is worth noting, is the bootstrapping
mechanism. By bootstrapping we refer to the procedure of providing agents with the
information required to jump-start the newscast network’s formation. In principle, a new
agent joins by contacting any existing agent and exchanging caches. When the whole
network starts from scratch, a systematic way has to be present to provide one or more
initial communication points to each agent. In our experiments this task was handled
by the utility module. All agents were provided with the single address of one selected
agent. Providing agents with a choice of (possibly random) agents to connect to initially,
enhances the randomness of the network in the early cycles. However, a bootstrapping
mechanism as simple and centralized as the one we chose further substantiates our
claims of the protocol’s convergent behavior, as discussed in the following section.

4 Results

This section presents a thorough analysis of the output of our three large-scale exper-
iments with 128,000 correspondents using cache sizes of 20, 30, and 40, respectively.
We will often compare the emerging communication graphs to random graphs. In all
cases, the random graphs we refer to are generated by selecting exactly c undirected
edges randomly for each node. For example, in such a graph each node has at least c
edges (but usually more).

4.1 Statistical Properties of the Communication Graph

Figure 6 illustrates the two most important properties of the emergent communication
graphs. The number of cycles actually performed was over 5000, however, only the ini-
tial cycles are depicted because the values remain the same throughout the experiment
indicating a convergent behavior.

The average path length from a node is defined as the average of the minimal path
lengths of that node to all other nodes. To get a finite value we have to have a con-
nected graph. We can observe very low average path lengths which coincide with the
expected lengths after extrapolation of the simulation data shown in Figure 3(a). The
initial peak is explained by the applied bootstrapping mechanism described in Section 3.
This mechanism results in an initially unbalanced neighborhood structure. However, af-
ter all correspondents get connected to the collective, the average path length converges
quickly to its final value.



1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140

av
er

ag
e 

pa
th

 le
ng

th

complete cycles

c = 20
c = 40

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

cl
us

te
rin

g 
co

ef
fic

ie
nt

complete cycles

c=20
c=40

(a) (b)
Fig. 6. (a) The evolution of average path length from a node. (b) Clustering coefficient.

The average clustering coefficient taken over all nodes is shown in Figure 6(b), and
again corresponds to our simulation results. Together with the values found for average
path lengths, we can indeed conclude that our communication graphs are small-world
graphs.

Small-world graphs come in very different flavors however. One interesting property
to investigate is whether our graphs are scale free or not. The degree of a random node
defines a random variable. If this variable is exponentially distributed (linear on the
log-log scale) then the graph is scale free. Figure 7 shows the distribution of the node
degree for the case of c = 20 which deviates the most from the random case.
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It can be seen clearly that our communication graph is not scale free. From a de-
pendability point of view this is an advantage since scale-free graphs are sensitive to
the removal of highly connected nodes (even though they are less sensitive to random
node removal). The effect of node removal in our graphs is discussed next.
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Fig. 8. Partitioning of the communication graph as a function of the percentage of removed ran-
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4.2 Robustness to Node Removal

Figure 8 shows the effect of node removal to the connectivity of the communication
graph. Note that the number of clusters decreases when approaching 100% removal be-
cause the remaining graph itself becomes small. The graph shows very similar behavior
to a random graph, especially if the cache is large. These results indicate considerable
robustness to node failures especially considering the size of the largest cluster which
indicates that most of the clusters are in fact very small and most of the nodes are still
in a single connected cluster.

5 Conclusions

In this paper we presented experiments with a Java implementation of the newscast
model of information dissemination. The experiments involved 128,000 correspondents
communicating with each other using UDP over a wide-area, large-scale heterogeneous
cluster of processors.

The outcome of these experiments is particularly valuable since it represents the real
implementation of our model as opposed to previously conducted simulations, yet the
size of the system is comparable with the scale of typical simulation results as well. The
results are in complete agreement with the theoretical predictions and simulations pre-
sented in [8] providing practical evidence concerning the correctness of our algorithm
and of the statistical properties of the emerging communication graphs.

As we demonstrated, the series of the communication graphs show stable small-
world properties which make it a dependable and effective device for information dis-
semination and membership management. Most importantly, these properties are not
maintained explicitly, but they are emergent from the underlying simple epidemic-style
information exchange protocol.
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